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We point out that  the possession of reversal operations, by  a magnetic lattice, causes the ex- 
tinction of certain classes of magnetic reflections of unpolarized neutrons. Accordingly, the ob- 
servation of systematic absences of magnetic reflections can be interpreted to identify the reversal 
operations involved. However, certain systematic absences of magnetic reflections are not caused 
by individual reversal operations, l~either are they trivial in the interpretation, nor do they have 
counterparts in the X-ray diffraction. We give in detail the interpretation of the absence of the 
(h00)-type magnetic reflections and that  of the absence of the (hk0) reflections. The result is applied 
to analyze the Debye-Scherrer neutron diffraction of ZnCr204 at liquid-helium temperature. We 
are abl@ to conclude that  on any cubic plane, whose normal is not in the direction of the sublattice 
magnetization, the 16 Cr ions within a magnetic unit  cell divide themselves into two groups, 
each of 8; the moments in one group are opposite to those in the other. 

W h e n  a vector (dipole), instead of a scalar (atom), 
is assigned to each site of a point  lattice, the dipole 
latt ice has fewer symmet ry  elements (repeating opera- 
tions) t han  the atomic lattice, unless the dipole mo- 
ments  are all equal  and parallel.  The dipoles m a y  be 
oriented along a preferred axis, or different preferred 
axes.  In  general, the  s y m m e t r y  elements of the dipole 
latt ice form a subgroup of the space group of the atomic 
lattice. Some s y m m e t r y  operations of the atomic lat- 
tice, when applied to the dipole lattice, m a y  leave" the 
la t ter  with every dipole turned through the same angle. 
When  this angle is 180 ° , the  dipole latt ice is brought 
into one with every dipole reversed in direction. We 
shall  call such an  operation, a reversal operation. 
Examples  of these ra ther  abstract  s ta tements  are 
found in the  ant iferromagnetie  lattices. In  the MnO- 
type  compounds (Shull, Strauser & Wollan,  1951), 
a t rans la t ion through one-half of a cubic edge of a 
magnet ic  uni t  cell is a reversal operation, and in MnO~ 
(Erickson, 1952), a t ransla t ion from a corner site to 
the  body center brings the magnet ic  latt ice into 
coincidence with one with every dipole turned 90 ° . 

For  the  case of X-ray  diffraction, lattice centerin~s 

(non-primitive lattices), screw axes, and glide planes 
cause extinctions in  different classes of reflections. 
Consequently,  the presence of these repeating opera- 
t ions of the  atomic latt ice is identif ied respectively 
b y  the  corresponding sys temat ic  absences of reflec- 
t ions observed in diffraction patterns.  A similar  
s i tuat ion exists for the magnet ic  diffraction of un- 
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polarized neutrons. (For a review of this field, see 
Bacon, 1955.) The uni t  cell of the dipole latt ice (or 
the magnetic  uni t  cell) is determined by the repeating 
operations. A reversal operation has the effect of ex- 
t inguishing a certain class of magnet ic  reflections. 
Accordingly, the observation of the systemat ic  ab- 
sence of certain reflections m a y  be interpreted to 
ident i fy  the corresponding operations. For example,  
we note tha t  in the Debye-Scherrer  pa t te rn  of the  
MnO-type compounds, the Miller indices of each of 
the magnet ic  reflections which have non-vanishing 
in tens i ty  are all odd numbers .  I t  is this  observation 
tha t  leads us to conclude tha t  a t ransla t ion through 
one-half of a cubic edge of the magnetic  uni t  cell is 
a reversal operation. Other examples  m a y  be found 
in almost every neutron diffraction pa t te rn  of anti- 
ferromagnetic lattices. A diffractionist  will have no 
trouble in constructing a table of all the possible 
reversal operations and their  corresponding absences 
of reflections. (A similar  table for X-ray  diffraction, 
including the latt ice centerings, screw axes, and 
glide planes of atomic lattices has been given in 
several texts, e.g. Buer~er, 1942.) However, certain 

possible systematic absences of magnetic reflections 
are not  caused by individual  reversal operations. These 
are nei ther  t r ivial  in the interpreta t ion nor have 
counterparts  in X-ray  diffraction. A number  of them 
were discovered when the author  made an a t t empt  to 
analyze the Debye-Scherrer  pa t te rn  of ZnCr204 
(Goldman, Hast ings & Corliss, 1954) at l iquid-hel ium 
temperature.  As a result, an impor tan t  feature of the 
ant i ferromagnet ic  latt ice of this  compound was re- 
vealed by  the  ext inct ion of all the  magnet ic  diffraction 
lines of the (h00) type. 
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Let  us recall tha t  the in tens i ty  of magnet ic  diffrac- 
t ion of unpolarized neutrons is given by  

/ =  IFI ~ , (1) 

where the (vector) ampl i tude  

(m. u. c.) 
F(hk/) = c .~  mifj(O)q ] exp i2z(hx i+kyj+lz j )  , (2) 

J 
with 

qj(hkl) = e(hlcl)(e(hkl) . e j ) - e / .  (3) 

(m.  u.  c.) 

The summat ion  ~ is taken  over all the magnet ic  

ions in the magnet ic  uni t  cell. m; an~l f j  are respec- 
t ive ly  the momen t  a n d . t h e  form factor of the j t h  
magnet ic  ion, and c is a constant,  f~ is a funct ion of 
the  Bragg angle 0. For coherent scattering m/ is 
proport ional  to Sj instead of {Sj(Sj+I)}½, where S/ 
is the spin quan tum number  of the j t h  magnet ic  ion. 
e(hkl) and ej are respectively the uni t  vector normal  
to the (hkl) plane and tha t  in the direction of the 
j t h  moment .  In  most  cases, there exists a single pre- 
ferred axis, i .e.e. i  = +e,  and (2) reduces to 

(m.  u. c.) 

F(hkl)  = cq(hkl) ~" (±mi) f]  exp i2~(hx]+ky/+lzi)  , (4) 

where q(hkl) is the sine of the angle between e(hkl) 
and e. The + and  - signs before m i mus t  be chosen 
according to whether  e1 = e or - e .  For  our present 
purpose let us consider the  (h00) reflections. 

(m.  11. c.) 

F(h00) = c sin (ez ^ e) Z ( ± m j ) f  i exp i2~hxj  
J 

4 -- c sin (e~^ e) ..~ " (±mj) exp i 2~hxo~, (5) 

where e x is the uni t  vector in the direction of x axis 
(m. u. c.) 

and sin (e~ A e) is s imply  q(hO0). The summat ion  ~" 
J 

is carried out by  first summing  over ions in a plane 
on which x -- const. × x~ and then  summing  over the 
different x~ planes. Assuming tha t  the same form 
factor, or at  least an average one, m a y  be used for the 
magnet ic  ions, we obtain the relation 

sin (ezAe) ~" (±mj) oc 1 ,,~F(hO0) • (-i2 hx ) (6)  

by  making  a Fourier  inversion. Therefore, when all 
the  (h00) reflections are absent  we must  have 

i.e. either 

o r  

sin (exA e) ~ (±mj)  = 0; (7) 

(2m/)  -- 0 ,  (8) 
xj=x~ 

e / / e ~ .  (9) 

Equat ion  (8) means  tha t  the sum of the  magnet ic  
moments  of the ions on an x = const, p lane is zero. 
If the magnetic  ions are all of the same kind  or have  
equal moments ,  we mus t  have  equal  numbers  of 
moments  in the opposite directions in an x = const. 
plane, thus forming an ant i ferromagnet ic  sheet. 

Similarly,  we have 

(II1. U. C.) 

.F(hlcO) = cq(hkO) .X ( .2.," (±mi)f/(O) } 
xo, :~j=xo, 
yo, yj=ya 

× exp i2u  (hx~,+ky~,). (10) 

When  the same form factor, or at  least an  average 
one, m a y  be used for the magnet ic  ions, we have,  by  
making  a Fourier  inversion, 

1 
(+ mi) ~ ~ "  {F(hkO)/q(hkO)f(O)} 

~S=x c h,~. 
yi=,J x exp [- i2~(hx~+ky~,)] ,  (11) 

where the summat ion  Z '  is taken over all values of h 
h,k 

and k except those for which q(hkO) = 0. Therefore, 
if all the (h/c0) reflections are absent,  we have 

Z (+m]) = 0; (12) 
xj=x~ 
yj=y~ 

i.e. the  sum of the moments  of magnet ic  ions on a 
l inear a r ray  in the z direction is zero. If  the  ions are 
all of the  same kind  or have  equal  moments  we mus t  
have equal  numbers  of moments  in opposite directions 
on a line in the z direction. In  Table 1 we list the 
systemat ic  absences and their  in terpreta t ions  con- 
sidered above. Their  applicat ions to the D e b y e -  
Scherrer pa t t e rn  are included. 

The magnetic  uni t  cell (m.u.c.) of ZnCrgO4, which 
has a normal  spinel structure,  has cubic edges twice 
as large as those of its chemical  uni t  cell. Each m.u.c. 
contains 128 Cr ions. They  are dis t r ibuted on 8 cubic 
planes with 16 on each of them. In  principle,  the 
magnetic  s tructure can be de termined by adjus t ing  
a hypothet ic  model  with the observed line intensi ty.  
The method  is tedious when applied to the present  
case, and the result  when concluded would be am- 
biguous. For tunate ly ,  we find tha t  in the  D e b y e -  
Scherrer pa t te rn  of ZnCr204, the magnet ic  reflection 
lines of the (h00) type  are absent.  Therefore, ZnCrgO 4 
must  have a magnet ic  lat t ice such that ,  on a n y  cubic 
plane whose normal  is not in the direction of the sub- 
latt ice magnetizat ion,  the 16 Cr ions wi th in  a magnet ic  
uni t  cell divide themselves into two groups, each of 8; 
the moments  in one group are opposite to those in the 
other. As a result, i t  is sufficient to conclude tha t  
ZnCr204 is ant i ferromagnet ic  at l iquid-helif im tem- 
perature. On the other hand,  the Debye-Scherrer  
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T a b l e  1. The interpretation of certain systematic absences of magnetic reflections* 

Absent  reflections In te rpre ta t ion  

Single-crystal 
diffraction 

All (h00) reflections¢ 

All (h/c0) reflections$ 

All (h00) lines 

All (hbO) lines 

Debye-Scherrer  
diffraction 

The sum of the  magnet ic  momen t s  of the  
ions on every x ~--const. plane is zero: 
i.e. the magnet ic  lattice consists of anti- 
ferromagnetic sheets 
or 
The magnet ic  m o m e n t s  are either parallel 
or antiparallel  to the x axis 

The sum of the  magnet ic  momen t s  of the  
ions forming a linear chain along the  direc- 
t.ion of z axis is zero: i.e. the  magnet ic  
lattice consists of ant i ferromagnet ie  ar- 
rays 

The sum of magnet ic  momen t s  of the  ions 
on every x = const, plane, every y --~ eonst.  
plane and every z----const, plane is zero 
or 
The sum of magnet ic  momen t s  of the ions 
on every x ---- const, plane and every y ---- 
const,  plane is zero and the  momen t s  are 
either parallel or antiparallel  to the z axis 

The sum of magnet ic  momen t s  of the  ions 
on every linear chain along the  x, y, and 
z direction is zero 

* Assnming tha t  all the magnet ic  ions are of the  same kind and tha t  their  momen t s  are either parallel or antipaxallel to a 
certain direction. 

t Similar in terpre ta t ion applies to the absence of (0/c0) or (00/) reflections. 
:~ Similar in terpre ta t ion applies to the absence of (Okl) or (hOl) reflections. 

p a t t e r n  of  Z n F e ~ 0 4  (Corl iss  & H a s t i n g s ,  1954) a t  v e r y  
l o w  t e m p e r a t u r e s  is r e m a r k a b l y  d i f f e r e n t  f r o m  t h a t  of  
ZnCr~04 .  T h e  d a t a  of  Cor l i s s  & H a s t i n g s  i n d i c a t e  a n  
a p p r e c i a b l e  i n t e n s i t y  f o r  t h e  (200) m a g n e t i c  r e f l e c t i o n  

l ine .  Cor l i s s  & H a s t i n g s  ( to  a p p e a r )  s u g g e s t e d  a n  a n t i -  
f e r r o m a g n e t i c  s t r u c t u r e  a f t e r  c a r r y i n g  o u t  a d e t a i l e d  
a n a l y s i s  of  t h e  D e b y e - S c h e r r e r  i n t e n s i t y .  

T h e  a u t h o r  w o u l d  l ike  t o  t h a n k  D r  J .  E .  G o l d m a n  
fo r  h i s  h e l p f u l  i n t e r e s t  in  t h i s  w o r k .  
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