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We point out that the possession of reversal operations, by a magnetic lattice, causes the ex-
tinction of certain classes of magnetic reflections of unpolarized neutrons. Accordingly, the ob-
servation of systematic absences of magnetic reflections can be interpreted to identify the reversal
operations involved. However, certain systematic absences of magnetic reflections are not caused
by individual reversal operations. Neither are they trivial in the interpretation, nor do they have
counterparts in the X-ray diffraction. We give in detail the interpretation of the absence of the
(00)-type magnetic reflections and that of the absence of the (hk0) reflections. The result is applied
to analyze the Debye—Scherrer neutron diffraction of ZnCr,0, at liquid-helium temperature. We
are ableé to conclude that on any cubic plane, whose normal is not in the direction of the sublattice
magnetization, the 16 Cr ions within a magnetic unit cell divide themselves into two groups,
each of 8; the moments in one group are opposite to those in the other.

When a vector (dipole), instead of a scalar (atom),
is assigned to each site of a point lattice, the dipole
lattice has fewer symmetry elements (repeating opera-
tions) than the atomic lattice, unless the dipole mo-
ments are all equal and parallel. The dipoles may be
oriented along a preferred axis, or different preferred
axes. In general, the symmetry elements of the dipole
lattice form a subgroup of the space group of the atomic
lattice. Some symmetry operations of the atomic lat-
tice, when applied to the dipole lattice, may leave the
latter with every dipole turned through the same angle.
When this angle is 180°, the dipole lattice is brought
into one with every dipole reversed in direction. We
shall call such an operation, a reversal operation.
Examples of these rather abstract statements are
found in the antiferromagnetic lattices. In the MnO-
type compounds (Shull, Strauser & Wollan, 1951),
a translation through one-half of a cubic edge of a
magnetic unit cell is a reversal operation, and in MnO,
(Erickson, 1952), a translation from a corner site to
the body center brings the magnetic lattice into
coincidence with one with every dipole turned 90°.
For the case of X-ray diffraction, lattice centerings

(non-primitive lattices), screw axes, and glide planes
cause extinctions in different classes of reflections.
Consequently, the presence of these repeating opera-
tions of the atomic lattice is identified respectively
by the corresponding systematic absences of reflec-
tions observed in diffraction patterns. A similar
situation exists for the magnetic diffraction of un-
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polarized neutrons. (For a review of this field, see
Bacon, 1955.) The unit cell of the dipole lattice (or
the magnetic unit cell) is determined by the repeating
operations. A reversal operation has the effect of ex-
tinguishing a certain class of magnetic reflections.
Accordingly, the observation of the systematic ab-
sence of certain reflections may be interpreted to
identify the corresponding operations. For example,
we note that in the Debye—Scherrer pattern of the
MnO-type compounds, the Miller indices of each of
the magnetic reflections which have non-vanishing
intensity are all odd numbers. It is this observation
that leads us to conclude that a translation through
one-half of a cubic edge of the magnetic unit cell is
a reversal operation. Other examples may be found
in almost every neutron diffraction pattern of anti-
ferromagnetic lattices. A diffractionist will have no
trouble in constructing a table of all the possible
reversal operations and their corresponding absences
of reflections. (A similar table for X-ray diffraction,
including the lattice centerings, screw axes, and
glide planes of atomic lattices has been given in
several texts, e.g. Buerger, 1942.) However, certain

possible systematic absences of magnetic reflections
are not caused by individual reversal operations. These
are neither trivial in the interpretation nor have
counterparts in X.ray diffraction. A number of them
were discovered when the author made an attempt to
analyze the Debye—Scherrer pattern of ZnCr,0,
(Goldman, Hastings & Corliss, 1954) at liquid-helium
temperature. As a result, an important feature of the
antiferromagnetic lattice of this compound was re-
vealed by the extinction of all the magnetic diffraction
lines of the (200) type.
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Let us recall that the intensity of magnetic diffrac-
tion of unpolarized neutrons is given by

I = |F?, (1
where the (vector) amplitude

F(hkl) =
with

m.u, C
Z m;f;(0)q; exp 27 (hx;+ ky;+1z;) , (2)
i

q;(hkl) = e (hkl){e (kkl) - e;}—e; (3)

m.u.c.)
The summation( 2 is taken over all the magnetic
i

ions in the magnetic unit cell. m; and f; are respec-
tively the moment and the form factor of the jth
magnetic ion, and c is a constant. f; is a function of
the Bragg angle 6. For coherent scattering m; is
proportional to S; instead of {§;(S;+1)}}, where S;
is the spin quantum number of the ]th magnetic ion.
e(kkl) and e; are respectively the unit vector normal
to the (hkl) plane and that in the direction of the
Jth moment. In most cases, there exists a single pre-
ferred axis, i.e. e; = +e, and (2) reduces to

(m.u.c.)
F(hkl) = cq(hkl) X (£m))f; exp i2n(hax;+ky;+1z;), (4)
i
where ¢(hkl) is the sine of the angle between e(hkl)
and e. The + and — signs before m; must be chosen
according to whether e; = e or —e. For our present
purpose let us consider the (A00) reflections.

(m.u.c.)

F(hO0) = csin (e, A €) X (+m,)f; exp i 2rha;
7

(m.u.e) ((m.u.c.)
=csin (e,Ae) 3 { Py (imi)fj} exp ¢ 2nhx,, (5)

Zy Tj=2y

where e, is the unit vector in the direction of z axis
(m.u.c.)

and sin (e, A €) is simply ¢(200). The summation )

7
is carried out by first summing over ions in a plane
on which x = const. xx, and then summing over the
different z, planes. Assuming that the same form
factor, or at least an average one, may be used for the
magnetic ions, we obtain the relation

F (R00)
A e)”y%xa(im ) ¢ %‘TW

by making a Fourier inversion. Therefore, when all
the (A00) reflections are absent we must have

sin (e, exp (—i2nhx,) (6)

sin (e;Ae) X (+m;) = 0; (7)
2',—_—1
i.e. either
2 (xm) =0, (8)
or e
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Equation (8) means that the sum of the magnetic

moments of the ions on an x = const. plane is zero.

If the magnetic ions are all of the same kind or have

equal moments, we must have equal numbers of

moments in the opposite directions in an x = const.

plane, thus forming an antiferromagnetic sheet.
Similarly, we have

(m.u.c.)

F(hkO) = cq(hk0) X { 3 (+m,)f;(0)}

Ty T=Zy

Yo 3’; Yo

x exp 127 (hx,+ky,) . (10)

When the same form factor, or at least an average
one, may be used for the magnetic ions, we have, by
making a Fourier inversion,

3 (£my) e = z " {F (hk0)/q(RR0)f(6)
rf=x

yi=y X exp [—z2n(hx,+kya)] ,» (11)

where the summation 3’ is taken over all values of %
bk

and k except those for which ¢(kk0) = 0. Therefore,
if all the (hkO) reflections are absent, we have
Ij=xa
¥i=Ya

(12)

i.e. the sum of the moments of magnetic ions on a
linear array in the z direction is zero. If the ions are
all of the same kind or have equal moments we must
have equal numbers of moments in opposite directions
on a line in the z direction. In Table 1 we list the
systematic absences and their interpretations con-
sidered above. Their applications to the Debye—
Scherrer pattern are included.

The magnetic unit cell (m.u.c.) of ZnCr,0,, which
has a normal spinel structure, has cubic edges twice
as large as those of its chemical unit cell. Each m.u.c.
contains 128 Cr ions. They are distributed on 8 cubic
planes with 16 on each of them. In principle, the
magnetic structure can be determined by adjusting
a hypothetic model with the observed line intensity.
The method is tedious when applied to the present
case, and the result when concluded would be am-
biguous. Fortunately, we find that in the Debye-
Scherrer pattern of ZnCr,0,, the magnetic reflection
lines of the (k00) type are absent. Therefore, ZnCr,0,
must have a magnetic lattice such that, on any cubic
plane whose normal is not in the direction of the sub-
lattice magnetization, the 16 Cr ions within a magnetic
unit cell divide themselves into two groups, each of 8;
the moments in one group are opposite to those in the
other. As a result, it is sufficient to conclude that
ZnCr,0, is antiferromagnetic at liquid-helium tem-
perature. On the other hand, the Debye-Scherrer
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Table 1. The interpretation of certain systematic absences of magnetic reflections*

Absent reflections
All (ROO) reflectionst

Single-crystal

diffraction
All (hkO) reflections}
All (R00) lines
Debye—Scherrer
diffraction

All (hk0) lines

Interpretation

The sum of the magnetic moments of the
ions on every x = const. plane is zero:
i.e. the magnetic lattice consists of anti-
ferromagnetic sheets

or

The magnetic moments are either parallel
or antiparallel to the z axis

The sum of the magnetic moments of the
ions forming a linear chain along the direc-
tion of z axis is zero: i.e. the magnetic
lattice consists of antiferromagnetic ar-
rays

The sum of magnetic moments of the ions
on every x = const. plane, every y = const.
plane and every z = const. plane is zero
or

The sum of magnetic moments of the ions
on every z = const. plane and every y =
const. plane is zero and the moments are
either parallel or antiparallel to the z axis

The sum of magnetic moments of the ions
on every linear chain along the z, y, and
z direction is zero

* Assuming that all the magnetic ions are of the same kind and that their moments are either parallel or antiparallel to a

certain direction.

1 Similar interpretation applies to the absence of (0k0) or (00I) reflections.
1 Similar interpretation applies to the absence of (0kl) or (k0l) reflections.

pattern of ZnFe,O, (Corliss & Hastings, 1954) at very
low temperatures is remarkably different from that of
ZnCr,0,. The data of Corliss & Hastings indicate an
appreciable intensity for the (200) magnetic reflection
line. Corliss & Hastings (to appear) suggested an anti-
ferromagnetic structure after carrying out adetailed
analysis of the Debye—Scherrer intensity.

The author would like to thank Dr J. E. Goldman
for his helpful interest in this work.
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